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Plastic flow instability attracts increasing interest as a self-organization phenomenon showing various dy-
namical regimes, including deterministic chaos and self-organized criticality. The analysis of the associated
nonrandom noise—drastic jumps of the mechanical stress—however, confronts the variation of the noise
average parameters due to the evolution of the dislocation microstructure. The present paper examines some
limitations of the multifractal approach to the study of the evolving noise. The applicability of the multifractal
analysis to practical situations is proven using the example of discontinuous deformation curves observed
under conditions of the Portevin-Le Châtelier effect in an AlMg alloy, as well as model signals generated by
stretching multifractal Cantor sets. It is found that the smooth trends in the stress serration parameters may
narrow the range of the scale invariant behavior associated with the multifractal structure, but do not essentially
mask it.

DOI: 10.1103/PhysRevE.73.036114 PACS number�s�: 62.20.Fe, 05.45.Tp, 05.45.Df, 83.60.Wc

I. INTRODUCTION

One of the well-known manifestations of plastic instabil-
ity is the emergence of serrations on the deformation curves
due to the repetitive occurrence of spatially localized plastic
flow with very high strain rates, which may be caused by
various microscopic mechanisms �1,2�. Recent studies
showed that the complex spatiotemporal behavior associated
with plastic instability is a consequence of the self-
organization of dislocations interacting with each other and
with other crystal defects. Using various methods of analysis
of discrete time series, a rich behavior was found in a num-
ber of works �see �3–14�, and references therein� under con-
ditions of the Portevin-Le Châtelier �PLC� effect, an unstable
plastic flow related to the generation and propagation of lo-
calized deformation bands in dilute alloys �15�. In particular,
dynamical chaos �16� characteristic of nonlinear systems
with a small number of degrees of freedom was found in
�4–6,8�. At the same time, self-organized criticality predicted
for extended systems �17� was detected in �3,7–9�. It was
proven that these two distinct dynamical regimes may occur
in the same material under different experimental conditions
and that the corresponding transition is related to a transition
from localized to propagating deformation bands with an in-
creasing strain rate �8,11�. Moreover, there are indications
that a similar dynamical behavior may show up for other
microscopic mechanisms of plastic instability �18–21�.

The multiscale nature of the observed behavior suggested
the use of the multifractal analysis �22� of serrated deforma-
tion curves as a general framework for the plastic instability
investigation �11,13�. It was found that the deformation
curves often show a multifractal structure in a limited scaling

range depending on the experimental conditions. In particu-
lar, a drastic widening of the multifractal spectrum was ob-
served at the localization-propagation transition mentioned
above �11�. Such a behavior is similar to the multifractality
predicted for the Anderson transition from localized to delo-
calized electron wave functions �23�. This adds to the interest
of plastic instability, which can be seen as representative of a
broader class of phenomena.

However, the investigation of the unstable plastic flow is
impeded by the evolution of the defect microstructure during
deformation, which leads to the strain hardening of the ma-
terial together with an alteration of the average parameters of
the stress fluctuations. The general question of the robustness
of the multifractal structure of real signals with regard to
their unsteadiness is thus addressed in the present paper, us-
ing the example of the PLC effect. It is shown that the noise
evolution narrows the scaling extension but does not essen-
tially alter the multifractal structure in practical situations. It
is then possible to avoid arbitrary hypotheses in the signal
preprocessing aimed at removing the undesirable trend. The
results obtained are confirmed on model structures generated
by deliberately distorting multifractal Cantor sets.

The outline of the paper is as follows. Section II describes
the microscopic mechanism of the PLC effect and some pe-
culiar features of the macroscopic behavior of serrated defor-
mation curves. Experimental details and the numerical tech-
nique used for the data analysis are presented in Sec. III. In
Sec. IV, the results of the multifractal analysis of the experi-
mental data and the model Cantor sets are discussed. The
conclusions are outlined in Sec. V.

II. THE PORTEVIN-LE CHATELIER EFFECT

The dynamical nature of the PLC instability can be quali-
tatively understood by considering the strain rate sensitivity
�SRS� of the flow stress, which plays a similar role in the
plasticity problems to that of the resistance in electric cir-
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cuits. An increase in the strain rate �̇ requires a decrease in
the waiting time of dislocations at obstacles to be overcome
by thermal activation. This is ensured by a higher flow stress
�, thus leading to an ascending ���̇� dependence and a posi-
tive SRS. On the other hand, the segregation of solute atoms
at dislocations during the waiting time �dynamical strain ag-
ing� results in additional dislocation pinning, the strength of
which follows an opposite dependence: it becomes weaker
with increasing �̇ because less time is available for aging.
The competition of these two trends gives rise to a region of
strain rate values where the SRS is negative, the overall de-
pendence acquiring an N shape. During a test under a con-
stant imposed strain rate �̇a within the negative-slope range,
this brings to the relaxation-oscillation type of instability
�24�, i.e., a cyclic behavior comprising �̇ jumps between the
slow and the fast positive-slope branches of the N shaped
curve, which are transferred into drastic � falls by the elastic
reaction of the deforming machine.

This qualitative consideration assumes that all disloca-
tions behave equally. However, the strain heterogeneity in
real samples depends on both internal factors, such as the
material microstructure and composition, and on the experi-
mental conditions, including the strain rate, the temperature,
and the test scheme. This leads to a great variety of serration
patterns �1�. Therefore, the analysis of the stress fluctuations
is expected to shed light on the collective dynamics of dis-
locations under various conditions.

Such an analysis is complicated by the strain hardening
which occurs at a slower time scale corresponding to the
overall test duration. This is illustrated in Fig. 1�a� that
shows a deformation curve of an AlMg polycrystal exhibit-
ing the PLC effect. It can be seen that the plastic flow re-
quires a gradually increasing average stress level. This strain
hardening would not prevent us from analyzing statistical
properties of stress fluctuations if it did not influence on their
averaged parameters. However, such constancy is usually not
the case. One of the consequences of strain hardening is a
smooth alteration of the average stress jump depth, as can be
readily seen in Fig. 1�a�. This is usually easily taken into
account with the aid of the following procedure. First, a short
enough portion of the nearly stabilized deformation curve at
the late deformation stage, corresponding to the least strain
hardening rate, is allotted for the analysis. This portion
should be long enough to provide a significant statistical data
sample. For this reason, the remaining effect of the strain
hardening on the span of the stress oscillations is removed by
normalizing the selected portion. Various normalization pro-
cedures adapted to a specific analysis were described, e.g., in
�3–9,11�. In particular, since the current stress level and the
jump scale are both related to the microstructure state, this
allows for a physically based normalization of the deforma-
tion curve with regard to the average trend ���t�. Providing
that the average interjump intervals do not noticeably
change, the normalized time series may be considered sta-
tionary and analyzed.

The possible evolution of the interjump intervals has
never been discussed in this concern, which is partly due to
the observation of a weaker effect of strain hardening on the
jump frequency in comparison with the influence on their
size. However, many authors reported significant frequency

changes in the course of deformation �e.g., �25��. Apparently,
the nonconstancy of the intervals is more difficult to take
into account. To begin with, there are no obvious physical
grounds for the time reconstruction called to mimic a station-
ary behavior. At first sight, the plastic strain � might be used
instead of time, which may not be a proper variable account-
ing for the microstructure evolution. However, the strain de-
pendence of the strain increments accumulated between
stress jumps shows similar qualitative trends as those ob-
served for the time delays. Furthermore, the time reconstruc-
tion would require more sophisticated numerical procedures
than the normalization of the jump amplitudes. Indeed, when
the entire time series and not only the series of stress jumps
are to be analyzed, this would imply a step-by-step recon-
struction of the deformation curve and, therefore, an accu-
mulation of numerical errors. In this concern, the present
paper aims at evaluating the influence of the slow evolution
on the multifractal analysis of the original deformation
curves, as well as the workability of numerical procedures
suggested for the curve reconstruction.

III. METHODOLOGY

The study included two complementary approaches. First,
the multifractal properties of the original and reconstructed

FIG. 1. Example of a stress-time curve ��t� of an AlMg poly-
crystalline sample deformed at a strain rate of 6�10−4 s−1 and �b�
the corresponding plot of the absolute value of the derivative ��t�
= �d� /dt�. The inset in �a� shows a rescaled portion of the deforma-
tion curve.
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time series were compared using deformation curves re-
corded at different strain rates in order to provide a basis for
contrasting physical effects with numerical artifacts. The sec-
ond approach was based on the similarity between the non-
uniform Cantor sets �26� and the sequences of stress drop
amplitudes extracted from deformation curves. With this
similarity in view, Cantor sets with known multifractal spec-
tra were deliberately distorted to mimic gradual changes in
the jump size or frequency along the deformation curve. The
spectra calculated for the initial Cantor set and for its dis-
torted version were then compared.

The mechanical tests were carried out with a typical setup
for the observation of the PLC instability �see, e.g., �3��. Flat
polycrystalline specimens of a Al-3 at. % Mg alloy, with a
gauge length, width, and thickness of 25, 6.5, and 2.0 mm,
respectively, were annealed at 400 °C for 2 h to provide a
uniform solute concentration, quenched in water, and imme-
diately deformed at room temperature with a constant strain
rate in the range from 7�10−6 s−1 to 7�10−3 s−1. The stress
was recorded at a sampling rate of 2–500 Hz, depending on
the strain rate value so that the number of data points avail-
able for the multifractal analysis was typically around ten
thousand. Special attention was paid to the sufficient sam-
pling of stress jumps �see the inset in Fig. 1�a��. In addition,
the persistency of the analysis was checked by thinning out
the original data sets. It was proven that even keeping only
every fourth data point did not change the results of the data
processing.

The multifractal analysis is based on the hypothesis that
the natural complexity often arises from a self-similar, or
scale-invariant, behavior, rather than from randomness or
from superposition of multiple oscillations. In particular,
both the deterministic chaos and the self-organized criticality
are related to self-similarity. Since the multifractal analysis
was introduced in �23�, it has been reviewed in several books
�see, e.g., �26��. Its application to discontinuous deformation
curves was described in detail in �11,13�. In the present re-
port, we only discuss some relevant features of the procedure
employed.

Following the approach proposed in the previous investi-
gations of the multifractal structure of deformation curves
�11�, we analyzed the absolute value of the finite difference
approximant � j�tj� of the time derivative of stress �d� /dt�,
i.e., a variable reflecting the plastic flow bursts �see Fig.
1�b��. Such an approach was also justified in �13�, where the
results were compared to the multifractal characteristics ob-
tained using stress increment series ��j+1−�j�. Both kinds of
signals provided close results robust with respect to the ex-
perimental noise.

The � j�tj� time series were constructed using three kinds
of data files: portions of the original deformation curves, the
same portions after leveling off the average stress jump size,
and, finally, after additional reconstruction allowing for the
variable jump frequency, as described below. Recalculation
of the initial data files was based on the apparent linear
trends in the evolution of both the jump size and interjump
intervals �see Sec. IV�. The jump size variation was elimi-
nated by normalization using a linear regression fit through
the ���t� dependence. Herewith, the slow strain hardening
component was preliminary removed by subtracting a poly-

nomial fit of the deformation curve. It should be noted that a
more delicate moving average procedure was proposed in
�11�. The coarser averaging applied in the present paper was
aimed at minimizing the influence of the averaging method
on the discontinuity studied. The constant jump frequency
was provided by a gradual rescaling of the sampling intervals
dt in proportion to the linear regression fit f�t� through the
time dependence �t�t� of the interjump intervals

dtj
* = tj+1

* − tj
* =

dt

f�tj�
, �1�

where j is the serial number of the data point.
The multifractal spectra were calculated by the box-

counting fixed-size technique �27�. For this, the time interval
selected for the analysis was covered with a grid with the
box length �t that was varied as a power of 2. The starting
point for the covering was chosen at random, and the esti-
mate of the fractal dimensions was obtained by averaging
over ten trials. The probability measure �i��t� was calculated
as a normalized sum of � magnitudes in the ith interval �t:

�i��t� = �
k=1

n

�k��
j=1

N

� j , �2�

where N is the whole number of data points in the sample
and n the number of points in the ith interval. The qth mo-
ments of the measure of a multifractal set should obey the
following scaling laws in the limit of �t→0 �in practice, the
scaling is limited by the sampling time�:

Zq��t� = �
i

�i
q � �t�q−1�D�q� �q � 1� ,

Z1��t� = �
i

�iln��i� � D�1�ln�t . �3�

As q is varied from q=−	 to q=	, different � values, asso-
ciated with different data subsets, consecutively become
dominant in the above sums. The corresponding scaling de-
pendences thus determine a continuous spectrum D�q� of
generalized dimensions that provide a quantitative descrip-
tion of the data complexity. Herewith, Z0 simply gives the
number of boxes with nonzero measure, so that D�0� is the
fractal dimension of the geometrical support on which the
measure is distributed �22�.

The following examples describe some typical situations.
In the trivial case of a constant signal, � j�tj�=const, which
homogeneously fills the space, all D values are equal to
unity. This would also come out for a random or a periodic
signal in a range of box sizes exceeding a certain character-
istic time �e.g., the oscillation period�. A clustering of events
may produce self-similar fractal structures. Among those, the
uniform fractals are also characterized by a unique fractal
dimension, which depends on the clustering degree and,
therefore, reflects the underlying structure. Finally, the de-
scription of a heterogeneous multifractal object requires a set
of scaling indices. In particular, this means that their range
may be considered as a degree of the structure heterogeneity.
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It should be noted that the use of the whole set of experi-
mental data points � j�tj� imposes D�0�	1. Indeed, the geo-
metrical support of the corresponding measure is the whole
time interval, with the exception of a small number of points
where � j�tj�=0. Thus, the intermittent nature of the jump
generation �nucleation of the PLC bands� does not directly
come out in this kind of analysis. In return, the use of the
� j�tj� series instead of a series of stress jumps makes it pos-
sible to avoid the arbitrariness associated with discrimination
of small jumps against the unknown measurement noise.

We also calculated singularity spectra f�
� that allow for
a direct physical interpretation �22�. Namely, the local value
of the measure obeys a scaling law �i��t���t
, and f�
� is
the fractal dimension of the support of the subset associated
with the same 
. The value of 
 has a clear physical mean-
ing: it indicates the local singularity of the signal. Indeed, the
measure density �i /�t��t
−1 diverges if 
�1. It was
proven that the two kinds of the description are equivalent:
the functions f�
� and D�q� are related by the Legendre
transformation �22�. In particular, the range of the singularity
strength 
 is confined by the saturation levels of the gener-
alized dimensions: 
min=D�	� and 
max=D�−	 �.

The singularity spectrum was calculated using scaling re-
lationships for a modified measure, �̃i��t ,q�=�i

q /� j� j
q, as

proposed in �28�:

�
��t,q� = �
i

�̃i��t,q�ln�i��t� � 
�q�ln�t ,

� f��t,q� = �
i

�̃i��t,q�ln�̃i��t,q� � f�q�ln�t . �4�

The test nonuniform Cantor sets were treated in the same
way as the experimental � j�tj� series. To mimic the stress
jump frequency alteration with strain hardening, the Cantor
set was proportionally stretched �or compressed� according
to Eq. �1�, where the time variable should be replaced with
the coordinate l, and using the function

f�l� = 1 + 

l

L
. �5�

Here, L is the overall length of the Cantor set support, and 

is the stretching factor. In addition, the effect of stretching
along the ordinate axis, which corresponds to the stress jump
amplitudes, was also tested using the same proportionality
function.

IV. RESULTS AND DISCUSSION

A. Multifractal structure
of experimental curves

Figure 2 represents time dependences of the stress jump
amplitudes and interjump intervals for the deformation curve
shown in Fig. 1 ��̇a=6�10−4 s−1�. Such dependences are
typical of the range of strain rates �̇a below 10−3 s−1, within
which the deformation curves are reminiscent of relaxation
oscillations and reveal characteristic amplitude and fre-
quency scales that may evolve during deformation. The

curves display two distinct portions that on average behave
in a roughly linear manner and are characterized by different
slopes. The initial stage �� below approximately 5–8 %�,
hereafter referred to as a transient behavior, corresponds
to a strong hardening rate and fast growth of both �� and �t.
The transient behavior is followed by a stage close to a hard-
ening saturation, which is thought to reflect a quasistationary
dynamical behavior and is usually studied. Indeed, the visual
appearance of serrations becomes more regular and the
corresponding data in Fig. 2 display almost no time depen-
dence of �� and only a slight increase in �t. However, con-
siderably stronger dependences of the jump parameters at the
saturation stage, either ascending or descending, were ob-
served, also �see also �25��. In some cases, the changes cor-
responded to a stretching factor �
� up to 0.5 �see Eq. �5��.
Therefore, neither stage can, in general, be saved from taking
care of the effects caused by the signal variation with the
strain hardening. In the present work, the multifractal char-
acteristics were calculated for both deformation stages. The
analysis of the transient portion, alongside with providing an
opportunity to evaluate the multifractal technique in the most
unfavorable conditions, gives a handle to the study of the
transient behavior, almost unexplored for the time present.

For higher �̇a values, the average stress jump parameters
were practically constant except for a short initial stage that

FIG. 2. Time dependences of �a� the stress jump size �� and �b�
intervals �t between the neighboring jumps. The dashed lines show
regions with different values of the average rate of growth of the
jump parameters.
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was cutoff. This strain rate range corresponds to very irregu-
lar deformation curves with a jump statistics that progres-
sively acquires a power-law shape when the strain rate is
increased �see, e. g., �1� for the serration type nomenclature�.
Such a behavior, characterized by the disappearance of in-
herent event scales, is akin to self-organized criticality �17�.
In this case, only one kind of � j�tj� time series, namely, the
time derivative of the original deformation curve was ana-
lyzed.

The multifractal structure was revealed for most of ex-
perimental curves in some scaling intervals. Figure 3 pre-
sents an example of the scaling dependence �3� for the tran-
sient stage �t�220 s� of the deformation curve shown in Fig.
1. The corresponding � j�tj� series was obtained by leveling
off the stress jump size. It can be recognized that scaling may
be clearly detected for these data in spite of the time depen-
dence of the interjump intervals, which remained intact upon
the curve preprocessing.

The influence of various types of the deformation curve
reconstruction on the corresponding multifractal structure is
illustrated in Fig. 4. It compares the singularity spectra f�
�
calculated using three kinds of time series for both the tran-
sient �curves A-C� and quasistationary �curves D and E� de-
formation at �̇a=6�10−4 s−1. Also shown is a spectrum ob-
tained for a sample deformed at a higher strain rate, �̇a=6
�10−3 s−1 �curve F�. Figure 4 is representative of some gen-
eral features relevant to all specimens. First of all, the results
for positive q values �left parts of the singularity spectra� are
quite close for the original and reconstructed time series. For
example, the horizontal shift between curves A �original de-
formation curve� and C �both the jump amplitudes and inter-
jump intervals were leveled off� comprises approximately
0.045±0.002 for 
�40�	
min=D�	� and 0.007±0.0003 for

�0�. Here, the average slopes of the corresponding scaling
dependences �see Eq. �4�� and the standard deviations were
estimated by the least squares method. In the whole set of
experiments, the maximum change in 
min upon any kind of

reconstruction of the transient stage did not exceed 0.05.
This value is considerably smaller than the shifts observed
upon variation of the experimental conditions, which leads to
qualitative changes in the shape of the deformation curves,
indicative of transitions between different dynamical regimes
of the PLC effect. Indeed, the difference between 
min values
measured for curve F �high strain rate� and for the group of
curves A-E �lower strain rate� is approximately 0.3, i.e., six
times the variation caused by reconstruction. Moreover, the
examples in Fig. 4 show that reconstruction of the quasista-
tionary stage left the multifractal characteristics practically
uninfluenced. For instance, no noticeable shift can be de-
tected between curves D �jump size normalization� and E
�full reconstruction�. It can be seen that f�40� was the only
parameter manifesting strong alterations upon reconstruc-
tion. However, these changes may not be considered signifi-
cant. As a matter of fact, the extreme values f�±	 � cannot be
drawn from experimental data with a high certainty because
of the infinite slopes of the singularity spectrum at q= ±	
�22�. Indeed, the vertical error bars shown for several data
points in Fig. 4 are negligible at the top of the spectra and
quickly grow towards the edges. The level of uncertainty is
similar for different curves in Fig. 4 and is only shown for
the separately lying curve F in order to avoid overcharging
of the plot. For the spectra presented in Fig. 4, the changes in
the estimate of the dimension f�40� after reconstruction were
inferior to approximately 0.08; this value did not exceed the
standard deviation estimate �from 0.09 to 0.15 for various
curves plotted in the figure�.

It may be concluded that the unsteadiness of the noise
related to the PLC effect does not crucially hide its multi-
fractal structure for q�0. The data of Fig. 4 also show that

FIG. 3. Dependences of the qth moments Zq of the probability
measure on the grid box length �t �see Eq. �3�; arbitrary units� for a
time series obtained upon eliminating the growth of the stress jump
size at the transient stage of the deformation curve ��̇a=6
�10−4 s−1�.

FIG. 4. Examples of the singularity spectra for �̇a=6
�10−4 s−1 �curves A–E� and �̇a=6�10−3 s−1 �curve F�. The data
for the lower strain rate were separately processed at the transient
stage �curves A–C� and the quasistationary stage �curves D and E�.
The figure illustrates the effect of the evolution of the stress serra-
tions: the � j�tj� series were calculated for the original stress-time
curves �curves A and F�, after normalization of the stress jump
amplitudes �curves B and D� and after additional time reconstruc-
tion �curves C and E�. Error bars �only shown for curve F in order
to avoid overcharging of the figure� show that the scaling indices
are well defined in the positive q range corresponding to the left
ascending branches of the spectra.
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the results for negative q values �right branches of the sin-
gularity spectra� are rather sensitive to reconstruction. More-
over, the right branches of curves D, E, and F drop to the
nonphysical region: f�
��0. This is related to the fact that
the negative q values correspond to the lowest �i and, there-
fore, the scaling is evaluated on a poor statistical basis of the
most rarified measure �cf. large error bars in the correspond-
ing q range�. In this case, a fixed-mass technique, which
forces accumulation of sufficient statistical samples, may
give better results �27�. In the present work, its application
only slightly improved the calculation results. This is obvi-
ously due to a rather poor overall statistics of the plastic
instability events accumulated before the specimen failure.
Thus, it is advisable to confine the multifractal analysis of
real deformation curves to the range of q�0.

Whereas the reconstruction of deformation curves almost
did not change the slopes of the scaling dependences, it en-
hanced the scaling range in some cases. The scaling range
found for the original curves typically comprised 1 to 1.5
orders of magnitude of �t. Such a short range may be due to
a number of factors, either physical �see �29� for the discus-
sion of the intrinsic cutoffs in empirical fractals� or related to
the measurement imperfection: the strain hardening effect
addressed here, the superposition of various microscopic
mechanisms of plastic flow, the finite specimen size, the in-
herent deficit of the instability events because of the final
specimen fracture, the instrumental noise, or the limited ex-
perimental resolution. It was found that the extension of the
scaling range sometimes reached half a decade upon the
curve preprocessing, which justifies application of the recon-
struction. However, it should be kept in mind that the physi-
cal grounds for the time reconstruction are unclear. As a
compromise, the following procedure may be proposed. To
avoid physical arbitrariness and numerical errors, the signal
preprocessing should be limited to leveling off the stress
drop size. If no scaling is found, a time reconstruction may
be undertaken in order either to corroborate the nonfractal
nature of the deformation curve or to reveal its possible mul-
tifractal structure.

It should be noted that these results also show the neces-
sity of an extreme caution in the analysis of experimental
data. Indeed, reconstruction of the transient deformation
stage was accompanied by detectable changes in the multi-
fractal spectra. This imposes a great care when interpreting
small variations of the fractal dimensions, often reported in
literature.

Interpretation of the multifractal structure of deformation
curves, as well as its limitations, goes beyond the scope of
the present paper. Some successful attempts of the physical
explanation, which made it possible to judge on the correla-
tion of the motion of dislocations, were reported in the pre-
vious works �11,13�. Nevertheless, one aspect is worth un-
derlining here. Namely, the closeness of the multifractal
characteristics found for the transient and quasistationary de-
formation stages testifies that the dislocation processes in-
volved in the PLC effect remained qualitatively the same
over the entire deformation curve in the tests performed. On
the other hand, this shows that the multifractal analysis is a
useful tool to distinguish essential dynamical features of the
deformation curves. It should be noted that the observed

uniqueness is not a general property of the PLC effect that
manifests a great variety of behaviors. In particular, qualita-
tive changes in the deformation curve shape, which bear wit-
ness to the transitions between different dynamical regimes,
may occur in the course of deformation without need to
change the strain rate or temperature �3,9,30�.

B. Influence of stretching of multifractal
Cantor sets

The reason for the robustness of the multifractal structure
of the experimental time series becomes clear when the ef-
fect of distortion of multifractal Cantor sets is considered.
The Cantor sets were constructed following a multiplicative
procedure of iterated division of an interval into i pieces in
such a way that the size of the ith peace is reduced by a
factors li and the measure ascribed to the piece is reduced by
a factor pi in each iteration step �26,27�.

Figure 5 presents an example of a multifractal set con-
structed using the rescaling factors li=

1
4 �i=1 to 4�, p1= 1

6 ,
p2= p3= 1

4 , and p4= 1
3 . The corresponding scaling depen-

dences for two q values are shown in Fig. 6 and are com-
pared to the dependences for the same set stretched in the
horizontal direction. To illustrate the effect of stretching, an
unrealistically high value of 
=3 �see Eq. �5�� was deliber-
ately chosen. It can be seen that even for such a high 
 value,
stretching only influences on the large-scale part of the de-
pendences. The deviation becomes more abrupt when q is
increased. However, the inflection point does not move with
changing q, so that the multifractal characteristics can be
conveniently determined. It can be seen that in the limit �t
→0, the scaling dependences have approximately the same
slope before and after stretching and, therefore, the multi-
fractal spectra almost coincide for both sets for q�0 �Fig.
7�. Curve C in Fig. 7 presents the multifractal spectrum of
the Cantor set that was stretched in both the horizontal and
normal directions, which corresponds to increasing both the
stress jump amplitudes and interjump intervals. Here, the
same stretching factor was used for both axes. It can be
recognized that the multifractal structure persists at q�0 in
this case, too. Such endurance seems to be a consequence of

FIG. 5. Measure for a multifractal Cantor set distributed on an
interval �0;16384�.

M. A. LEBYODKIN AND T. A. LEBEDKINA PHYSICAL REVIEW E 73, 036114 �2006�

036114-6



the scale invariance: when the signal is stretched or com-
pressed, the new elements replacing the old ones at a given
scale level have the same multifractal structure.

The results for smaller 
 values corresponding to real
experimental situations show that the influence of stretching
may be safely neglected for the trial Cantor set. It is, how-
ever, obvious that the experimental determination of the scal-
ing indices is a more difficult task, in part because of the
experimental noise and also because the slopes of the scaling
dependences are not known a priori. This problem can be
illustrated using data for the stretched Cantor set in Fig. 6.
Indeed, if the data were corrupted with a noise that blurred
scaling, this would lead to selection of a longer scaling in-
terval and, therefore, overestimation of the scaling indices.
However, the uncertainty is not crucial. This is demonstrated
in Fig. 7 by taking an extremely high value of 
=10. In this
case, the slopes of the scaling dependences could not be
determined correctly and the singularity spectrum became
narrower. The correction was however quite low. In particu-
lar, it reached the value of 0.04 for 
min, which is small in
comparison with the meaningful changes observed experi-
mentally upon variation of the strain rate.

V. CONCLUSIONS

The undertaken investigations touched upon a general
problem of determination of the structure of a noise, the
intensity of which varies during an experiment. The plastic
flow instability gives a simple example of such a situation.
Indeed, the stress jump size and frequency may evolve with
the material strain hardening reflecting the micrtostructure
evolution. This gives rise to two interconnected problems:
determine whether the dynamical structure of a signal re-
mains the same and analyze it.

In the present paper, the example of the Portevin-Le
Châtelier effect was used to prove the applicability of the
multifractal technique to the study of collective dislocation
processes showing up as macroscopic discontinuities on de-
formation curves. Comparison of multifractal spectra for the
original and reconstructed deformation curves proved that
the smooth trends in the stress serration parameters only lead
to a contraction of the range of the scale invariant behavior
but do not influence on the values of scaling indices and,
therefore, do not prevent from evaluating the deterministic
structure of the serrations. Herewith, the robustness of the
multifractal analysis permits one either to avoid the unnec-
essary pretreatment of deformation curves or to justify a cer-
tain reconstruction procedure aimed at extending the scaling
interval used for estimates.

In summary, the present data validate application of the
multifractal analysis to the characterization of the complex
structure of stress serrations, which reflect the collective dis-
location dynamics, and detection of the changes that occur in
the process of deformation or are induced by variation of
experimental conditions. Together with the verification of the
robustness of the multifractal structure with respect to ran-
dom noise �13�, it provides new evidences substantiating the
multifractal concept for the study of the plastic instability
and contiguous problems.
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FIG. 6. Examples of scaling dependences used to extract the
fractal dimension f�q� for an original multifractal set �
=0� and for
the same set after stretching of the intervals between segments in
proportion to the segment coordinate with the stretching factor 

=3 �see Eq. �5��. � f is given by Eq. �4�, �l is the grid size �arb.
units�.

FIG. 7. Singularity spectra calculated for the multifractal set.
The solid line shows the analytical dependence. A, spectrum calcu-
lated for the original set; B, results of the calculation after stretching
in the horizontal direction �
=3�; C, stretching in both horizontal
and vertical directions �
=3�; and D, horizontal stretching with 

=10.
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